Year 7:

You should know and understand:

Working Scientifically		
How to plan an experiment to investigate a Hyposthesis		
What the aim of an experiment is		
That a variable is a factor that may affect the results on an experiment		
The variable you have chosen to investigate how it affects the results		
of an experiment is called the independent variable. This is what		ĺ
you are changing.		
The variable that will be affected by changing the independent/input		
variable is called the dependent variable . This is what you measure		ĺ
& record		
A Fair Test is when you keep all variables the same/fixed (except the		
independent variable that you are deliberately changing). The variables		ĺ
you keep the same are called the control variables . If you change		ĺ
more than one variable at a time it is not a fair test.		
Results are more reliable if you repeat the experiment and average	1	
the results. Repeating does not make results more precise, it can		
make them more accurate		

Units & Density		
units and abbreviations for mass time length area and volume		
the measurement of the mass and volume of regularly-shaped solids		
Finding the volume of liquids using a measuring cylinder		
Finding the volume of irregularly shaped solids (using the displacement		
of water to find a volume)		
the relationship between density, mass and volume; how to use this for		
simple quantitative work		
that the unit of density is kg/m ³ or g/cm ³		

Energy	
the significance of the Law of Conservation of Energy	
that although energy is always conserved, it may be dissipated,	
reducing its availability as a resource	
that energy can exist in many different forms	
the form in which energy is stored in a particular situation	
how to describe the energy transformation taking place in simple	
situations	
that energy can be measured and that the unit of energy is the joule	
Thermal Energy	
Particle theory and energy changes in the 3 states of matter	
Conduction – how some materials are conductors and others are	
insulators.	
Convection – what convection is and real world examples	
Radiation – what black body radiation is. Real world examples	
Insulation – how insulation works	
How houses are insulated.	
Energy Resources	
that electricity is generated using a variety of energy resources	

about the variety of energy resources		
the distinction between renewable and non-renewable resources		
that a renewable resource is one which can be replenished within a		
lifetime;		
some of the advantages and disadvantages of renewable and non-		
renewable resources		
the role of the Sun as the ultimate source of the energy		
that a variety of processes is used to generate electricity		

Space		
that the weight of an object on Earth is the result of the gravitational		
attraction between its mass and that of the Earth		
that there is a gravitational force of attraction between any two		
masses; that this force causes bodies to fall towards the centre of the		
Earth; that the weight of a body is the pull of gravity on it		
how the movement of the Earth causes the apparent daily and annual		
movement of the Sun and other stars		
the relative positions of the Earth, Sun and planets in the solar system		
that the Earth is one of several planets which orbit the Sun;,		
the reasons for the changes causing night and day		
seasons		
and eclipses of the Sun and Moon		
the concept of a moon as a satellite, as shown by our Moon and the		
moons of other planets		
that the solar system is part of the Milky Way galaxy, and that the		
Universe contains many such groups of stars or galaxies		
about the scale of astronomical distances		
about the movements of planets around the Sun and to relate these to		
gravitational forces		
that it is gravitational forces which keep the Moon in orbit round the		
Earth and planets in orbit round the Sun		
that the Sun and other stars are light sources and that the planets and		
other bodies are seen by reflected light		
why the planets and our Moon are visible even though they are not		
light sources		
about the use of artificial satellites and probes to observe the Earth		
and to explore the solar system		

Light		
that light travels in a straight line at a finite speed in a uniform medium		
How to draw light ray diagrams		
that non-luminous objects are seen because light scattered from them		
enters the eye		
The law of reflection		
The difference between regular and diffuse reflection		
that, on a qualitative basis, light changes direction when it reaches the		
boundary between two different materials and that this phenomenon is		
called refraction		
that white light can be dispersed to give a range of colours		
how a prism disperses white light and that a similar effect occurs		
naturally in a rainbow		
Basic mixing of light colours		

Sound		
that light can travel through a vacuum but sound cannot,		
that light travels very much faster than sound		
that sound travels through solids, liquids and air, but not through a vacuum; that an event observed from a distance is seen before it is heard		
the relationship between the pitch of a sound and the frequency of the vibration causing it		
that increasing frequency increases pitch		-
that increasing amplitude increases the loudness of a sound		
that sound causes the eardrum to vibrate and that different people have different audible ranges		
that loud sounds can cause temporary or permanent damage to hearing		

Speed		
relationship between speed, distance and time;		
how to use this for simple quantitative work		
about the timing of moving bodies to measure speed;		
the concept of constant speed		
The concept of speeding up and of slowing down, without a formal		
definition of acceleration		

Year 8

Forces		
that the unit of force is the newton and that forces can be measured		
using a force meter (newton meter)		
that there is a gravitational force of attraction between any two masses		
that this force causes bodies to fall towards the centre of the Earth;		
that the weight of a body is the pull of gravity on it		
that unbalanced forces change the speed or direction of objects and		
that balanced forces produce no change in the movement of an object		
about the effects of forces on an object; that forces can act in different		
directions		
about the force of friction, including air resistance (drag), and its		
applications		
Effects of streamlining and its advantages		

Moments		
that forces can cause objects to turn about a pivot		
about the use of levers to change direction and magnitude of a force		
and their use in simple machines, e.g. crowbars, pliers, scissors		
the principle of moments		
that the unit of a moment is a newton metre (or newton centimetre)		
its application to situations involving one pivot		
simple quantitative examples involving moments about a single pivot;		
Pressure		
the quantitative relationship between force, area and pressure		
that the unit of pressure is N/m ² or N/cm ²		
apply knowledge of pressure in every day calculations		
how to use this for simple quantitative work		

Springs about experiments and calculations with springs and combinations of springs

Electricity		
that a battery or cell transforms chemical energy into electrical energy		
electrical energy is converted into other forms in electrical components		
that the current in a series circuit depends on the number of cells and		
the number and nature of other components		
and that current is not 'used up' by components		
that the unit of current is the ampere(amp)		
an ammeter and that it should be connected in series in the circuit		
Knowledge of resistors qualitative only		
That volt meters are connected in parallel		
how to design and construct series and parallel circuits,.		
about parallel and series circuits, involving cells, lamps, switches (push		
button, SPST, reed switches)		
resistors, variable resistors, motors, buzzers, LDRs, LEDs, fuses		
AND and OR circuits using switches		
about truth tables for these		

Magnetism		
about magnetic fields as regions of space where magnetic materials		
experience forces		
that like magnetic poles repel and unlike magnetic poles attract		
and that both poles will attract unmagnetised iron		
that the Earth has a magnetic field		
that a freely suspended bar magnet will align itself north-south		
the terms north-seeking and south-seeking poles		
that lines showing the direction of the field should have arrows pointing		
away from the north-seeking pole		
that repulsion by a known magnet is the only true test for another		
magnet		
that a current in a coil produces a magnetic field pattern similar to that		
of a bar magnet		
how to use plotting compasses and/or iron filings to show that current		
in a coil produces a magnetic field		
how to construct a simple electromagnet using an iron core and		
insulated wire; how to use relays		
Factors that affect the strength of an electro magnet		